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Morphological instabilities are common to pattern formation problems such as the
non-equilibrium growth of crystals and directional solidification. Very small perturba-
tions caused by noise originate convoluted interfacial patterns when surface tension is
small. The generic mechanisms in the formation of these complex patterns are present
in the simpler problem of a Hele-Shaw interface. Amid this extreme noise sensitivity,
what is then the role played by small surface tension in the dynamic formation and
selection of these patterns? What is the asymptotic behaviour of the interface in the
limit as surface tension tends to zero? The ill-posedness of the zero-surface-tension
problem and the singular nature of surface tension pose challenging difficulties in
the investigation of these questions. Here, we design a novel numerical method that
greatly reduces the impact of noise, and allows us to accurately capture and identify
the singular contributions of extremely small surface tensions. The numerical method
combines the use of a compact interface parametrization, a rescaling of the governing
equations, and very high precision. Our numerical results demonstrate clearly that the
zero-surface-tension limit is indeed singular. The impact of a surface-tension-induced
complex singularity is revealed in detail. The singular effects of surface tension are
first felt at the tip of the interface and subsequently spread around it. The numerical
simulations also indicate that surface tension defines a length scale in the fingers
developing in a later stage of the interface evolution.

1. Introduction
Surface tension is known to play an important role in pattern formation problems

such as dendritic crystal growth and directional solidification. Dendrites are common
to the micro-structural development in casting processes of metals and in needle
crystals. The understanding of these structures is crucial to the design of controlling
mechanisms for such technologically important processes. The generic features of
the morphological instabilities encountered in these pattern formation problems are
present in the relatively simple model of Hele-Shaw flows. In a Hele-Shaw cell, two
incompressible fluids of different viscosities are confined between closely spaced glass
plates. The problem of interest here is when the less viscous fluid displaces the more
viscous fluid. The intense study of the interface motion in a Hele-Shaw cell has also
been motivated by the analogy to oil displacement in a porous medium.

Significant progress has been achieved in understanding steady states and their
linear stability (see e.g. the review by Pelcé 1988). However, as demonstrated by
experiments (Maxworthy 1987; Arneodo et al. 1989), the Hele-Shaw interface does
not evolve into a steady shape when the dimensionless surface tension coefficient B
(defined in § 2) is sufficiently small. Even very small perturbations caused by noise can
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quickly grow and trigger tip-splitting processes and the formation of a convoluted
(even fractal) pattern on the Hele-Shaw interface. This extreme noise sensitivity is
due to the ill-posedness of the zero-surface-tension problem. The Hele-Shaw front is
subject to the Mullins–Sekerka instability found in non-equilibrium crystal growth.

What is then the role played by small surface tension in the dynamic formation
and selection of these complex patterns? What is the asymptotic behaviour of the
interface in the limit as B tends to zero? Here, we investigate numerically these
questions. Using a compact interface parametrization and rescaling of the governing
equations, we derive an effective numerical method that greatly reduces the impact of
noise, and allows us to capture and identify the singular contributions of extremely
small values of B.

There are challenging difficulties associated with the numerical computation of the
interface evolution. As in the experiments, numerical solutions experience a great
sensitivity to noise when B is small. For a channel flow, DeGregoria & Schwartz
(1986) and Meiburg & Homsy (1988) found that the amplitude of the perturba-
tions causing tip-splitting decreases rapidly as B is reduced. Moreover, as shown by
Bensimon (1986), and by Dai & Shelley (1993), the numerical solutions for small
values of B are extremely sensitive to the round-off level noise. The growth of noise,
which is essentially governed by the linearized equation of motion, is much faster
than the growth of the numerical solution governed by the full nonlinear equation.
Consequently, noise can quickly grow to affect significantly the interface. Numerical
filtering is inefficient once the noise has grown to a relatively high level.

Investigating the limit as B tends to zero requires a perturbation analysis. More
precisely, it requires understanding in what sense the small but non-zero B solutions
should be compared with the corresponding zero-surface-tension solution. Mathe-
matically, this means choosing the appropriate space and norm. For example, in any
Sobolev norm defined on the interface, we may conclude that the limit as B tends to
zero is regular as long as the zero-surface-tension curvature is smooth and bounded.
However, due to the ill-posedness of the zero-surface-tension problem, there is no
reason to expect that a small perturbation caused by the non-zero B will remain small
and smooth. The perturbation analysis should be performed in a space in which the
zero-surface-tension problem is well-posed. This is the space of complex analytic
functions. In this space, it is possible to obtain critical information about the motion
of complex singularities that may affect the physical interface.

Another difficulty is a surface-tension-induced singularity in the complex domain.
Tanveer (1993) and Siegel, Tanveer & Dai (1996) have developed a remarkable
asymptotic theory aimed at understanding the evolution of Hele-Shaw flows with
small B. The interface motion is described by a time-dependent conformal map z(ζ, t)
that takes the interior of a unit circle in the ζ-plane onto the physical domain of the
viscous fluid in the z-plane (the displacing fluid is assumed inviscid). The unit circle
itself is mapped to the free boundary. As pointed out by Tanveer (1993) a zero in
zζ(ζ, 0), with |ζ| > 1, spawns a singularity in the ζ-plane through the surface-tension
term. This so called daughter singularity, initially coinciding with the zero of zζ ,
moves away fast and approaches the unit circle when the zero is still far from it. If
nonlinear effects are neglected this complex singularity (according to the asymptotic
theory it is actually a cluster of singularities) could hit the physical domain at a
time td when the B = 0 solution is perfectly smooth. Some numerical evidence of the
effects of the daughter singularity and of the singular nature of surface tension was
provided by Siegel et al. (1996) who also confirmed some of the scalings predicted
by the asymptotic theory. However, they found that it is very difficult to compute for
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B < 10−5, even if quadruple (128-bit) precision is used. To study the limit as B tends
to zero we need to separate noise from surface tension and to capture the daughter
singularity for extremely small values of B. Note that the daughter singularity is
created at t = 0+ in the complex ζ-plane outside the unit disk but the interface itself
is analytic and its Fourier modes decay exponentially. For times of O(∆t), where ∆t
is the timestep, the amplitude of the daughter singularity (B times the function Ad(t)
in (3.6)) is O(B∆t). Thus, many digits are required to capture information about this
very weak initial singularity.

Here, we develop a novel numerical method to overcome the difficulties mentioned
above. One important observation is that the effect of noise can be significantly re-
duced by using a parametrization that yields a compact representation of the solution
in Fourier space. Out of many choices (Lagrangian, equal-arclength, etc.), the con-
formal map representation gives the most compact parametrization of the interface.
This was first discussed by Dai & Shelley (1993). The conformal parametrization was
also employed by Siegel et al. (1996) for its especial compact representation property.
With this parametrization, we can use effectively Krasny filtering (Krasny 1986) to
separate noise from the physical solution for the majority of high to intermediate
modes. Moreover, based on symmetry, the structure of the conformal map in Fourier
space is known (see Dai, Kadanoff & Zhou 1991) so that additional selective fil-
tering can be used. To resolve the initially weak daughter singularity in |ζ| > 1,
we reformulate the interface evolution equation in terms of the difference between
non-zero- and zero-surface-tension solutions scaled by B. This scaling allows us to
effectively compute the limit as B tends to zero. The scaled equation is solved using a
highly accurate time–space discretization with multiple-precision arithmetic of up to
80 digits. This high precision is needed both to capture the singular contributions of
surface tension and to reduce further the effects of noise.

Our numerical results clearly identify the singular effects of surface tension on the
evolution of the Hele-Shaw interface. Through a series of computations decreasing
B to 10−9 the influence of the daughter singularity is observed around the time td
predicted by the asymptotic theory. Near that time, the absolute value of the difference
between the first derivative of the zero and the non-zero-B solutions does not decrease
as B is reduced. Instead, the deviation from the B = 0 solution grows and becomes
more localized as B is decreased for a fixed time. The non-zero-B curvature and its
derivative deviate greatly from the corresponding B = 0 quantities. For a fixed time
after td, a pronounced increase in the deviation of these quantities and a shrinkage
of the length scale are observed as B is reduced. On the other hand, for a fixed B,
our numerical experiments show in detail how an extremely small but non-zero-B
solution is affected in time by the presence of the daughter singularity. The singular
effects are first felt (before td) at the tip of the interface and subsequently spread
around it. The spreading in time of the affected region supports the theory that the
daughter singularity is actually a cluster of singularities. The numerical simulations
also indicate that surface tension defines a length scale in the fingers developing in a
later stage of the interface evolution.

A more mathematical question is that of the all-time existence of solutions for any
surface tension. Duchon & Robert (1984) have shown the local-in-time existence of
smooth solutions for initial data that correspond to a graph of a sufficiently smooth
function. There is also a gobal-in-time existence result by Constantin & Pugh (1993)
for initial data close to a circle and without pumping. But, to our knowledge, there is
no proof of existence of analytic solutions, even for a short time, for general analytic
initial data. At a later stage our computations detect an abrupt and large growth
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of the curvature in time for a fixed but very small B (10−8). This rapid variation of
curvature detected by the numerics can give the impression of a finite-time curvature
singularity. However a more plausible explanation of this behaviour is provided by
the asymptotic theory. The daughter singularity cluster will asymptotically shrink to
a point, in the limit as B is decreased. The compact cluster will get within a maximal
distance of O(B1/2) to the unit disk but will not hit it in finite time. Since zζζ scales as
B−1/3 in the inner region characterizing the daughter singularity cluster, the impact
of this cluster on the physical domain can cause curvature to change from O(1) to
O(B−1/3) over an O(B1/3) time scale. The rescaling features of the asymptotic theory
inner-scale equation (Siegel et al. 1996) suggest that, if solutions exist for larger B,
they will exist for any non-zero B, at least well beyond td. If this is the case, surface
tension will define a length scale according to the minimum distance of the complex
singularity to the unit disk.

The rest of the paper is organized as follows. In § 2, the governing equations for
the Hele-Shaw interface are presented. In § 3, we describe briefly how the curvature-
induced complex singularity is generated. We devote § 4 to describe the numerical
method. In § 5, we present numerical results for both fixed time (past td) and decreasing
B, and longer time behaviour for fixed B. Further discussion of the results and
conclusions are given in § 6.

2. The equations of motion
We consider a bubble of inviscid fluid penetrating into a viscous incompressible

fluid in a Hele-Shaw cell. There is a source at the origin pumping mass at a constant
rate. The viscous fluid outside the bubble has a velocity field u given by Darcy’s law

u = − b2

12µ
∇p, (2.1)

where µ is the viscosity, p is the pressure, and b is the spacing between the two plates
in the Hele-Shaw cell. The incompressibility and Darcy’s law imply that the pressure
satisfies the Laplace equation

∇2p = 0. (2.2)

Here, we represent the interface motion by a time-dependent conformal map z(ζ, t)
that takes the interior of the unit circle in the ζ-plane onto the physical domain of
the viscous fluid in the z-plane. The unit circle itself is mapped to the Hele-Shaw
interface. Because of the presence of the source at the origin, z has the following
form:

z(ζ, t) =
a(t)

ζ
+ f(ζ, t), (2.3)

where f is an analytic function inside the disk, and a(t) is real and positive. The
kinematic condition states that the motion of the interface in the normal direction is
given by the normal component of the fluid velocity. Thus,

Re

{
zt

ζzζ
− ζΦζ

|zζ |2
}

= 0 on |ζ| = 1, (2.4)

where Φ is a complex velocity potential.
Surface tension introduces a jump in the pressure proportional to the local curvature
K. Since the pressure inside the bubble is constant, we can write the dynamic
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boundary condition as follows:

Re {Φ} =
B

|zζ |Re

[
1 + ζ

zζζ

zζ

]
on |ζ| = 1, (2.5)

where B = 2πb2T/(12µQa(0)) is a dimensionless surface tension parameter. Here T
is the surface tension and Q is the injection rate. We non-dimensionalize all variables
by taking Q = 2π and a(0) = 1. Letting Z(α, t) = z(eiα, t), using the boundary
conditions (2.4) and (2.5), and well-known relations between the real and imaginary
parts of an analytic function on the unit circle, we obtain the following evolution
equation (for a derivation see for example Constantin & Kadanoff 1991):

Zt = F(Zα) + BG(Zα), (2.6)

where

F(Zα) = −iZα(I − iH)|Zα|−2, (2.7)

and

G(Zα) = iZα(I − iH)[|Zα|−2HKα]. (2.8)

Here K is the mean curvature which, after setting Z = X + iY , is given by

K =
YααXα −XααYα

(X2
α + Y 2

α )3/2
. (2.9)

The subscript α means differentiation with respect to that variable. H is the periodic
Hilbert transform defined as

Hf(α) =
1

2π
PV

∫ 2π

0

cot 1
2
(α− α′)f(α′) dα′. (2.10)

There are several classes of exact B = 0 solutions (Saffman 1959; Howison
1986a, b, c; Shraiman & Bensimon 1984). In particular, we are interested in comparing
non-zero-B solutions with those zero-surface-tension solutions for which zζ(ζ, 0) has
at least one zero for |ζ| > 1. As we will see in the next section, in the presence of
surface tension, each zero of zζ(ζ, 0) spawns a complex (daughter) singularity through
the curvature. For concreteness, we consider the following expanding bubble with
three-fold symmetry (see Shraiman & Bensimon 1984):

z(ζ, t) =
A(t)

ζ

[
1 +

ζ3

2ζ3
0 (t)

]
, (2.11)

where

A(t) = A(0)ζ3
0 (0)

[
1−

(
1− 2

ζ6
0 (0)

+
1

ζ12
0 (0)

− 4t

ζ6
0 (0)A2(0)

)1/2
]1/2

, (2.12)

and

ζ0(t) = ζ0(0)

(
A(0)

A(t)

)1/3

. (2.13)

The parameters A(0) and ζ0(0) are real numbers satisfying A(0) > 0 and |ζ0(0)| > 1.
Here, we take A(0) = 1 and ζ0(0) = 1.2. The derivative zζ has three zeros located at
ζ = ζ0(t), ζ = ζ0(t)e

2πi/3, and ζ = ζ0(t)e
4πi/3. These zeros approach the unit disk and
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Figure 1. Exact zero-surface-tension solution for ζ0(0) = 1.2 at t = 0 and tc = 0.3302.

impinge on it at a time tc (ζ0(tc) = 1) given by

tc =

[
A(0)(ζ6

0 (0)− 1)

2ζ3
0 (0)

]2

. (2.14)

At this time tc, the solution has three singularities in the form of cusps. For A(0) = 1
and ζ0(0) = 1.2, tc = 0.3301. Figure 1 shows the zero-surface-tension exact solution
both at t = 0 and t = tc.

3. The daughter singularity
Here, we describe briefly how an initial zero in zζ(ζ, 0) introduces a complex

singularity through the curvature when B > 0. We refer the reader to Tanveer’s
original work (Tanveer 1993) and also to Siegel et al. (1996) for the details and the
complete description of the asymptotic theory.

The perturbation analysis requires extending the equations of motion to |ζ| > 1.
First, equation (2.6) can be analytically continued into the domain |ζ| < 1 by the use
of the Poisson integral formula. The analytic continuation to |ζ| > 1 is achieved by
contour deformation.

In the domain |ζ| > 1, the extended evolution equation has the following form:

zt = q1zζ + q2 + B(q3(zζ)
−1/2
ζζ + r), (3.1)

where q1, q2, and q3 are analytic functions of ζ in |ζ| > 1. The function r contains

surface tension terms which are less singular than (zζ)
−1/2
ζζ in the neighbourhood of a

zero of zζ(ζ, 0). The explicit forms of these functions are irrelevant to this discussion.
The well-posedness of the zero-surface-tension problem in the extended complex

domain |ζ| > 1 allows a perturbation expansion for small B of the form

z(ζ, t) = z0(ζ, t) + Bz1(ζ, t) + · · · , (3.2)
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where z0 is the zero-surface-tension solution (see Tanveer 1993). Then z0 and z1 satisfy
the following equations:

z0t = q10z0ζ + q20, (3.3)

z1t = q10z1ζ + q30(z0ζ)
−1/2
ζζ + · · · , (3.4)

where the subscript 0 on any qi term denotes its evaluation using the corresponding
B = 0 solution.

The most surprising and interesting result obtained by the formal asymptotics is
when zζ(ζ, 0) contains a zero. Let

zζ(ζ, 0) ∼ D(0)(ζ − ζ0(0)) for |ζ0(0)| > 1, (3.5)

then in order to balance the most singular term (z0ζ)
−1/2
ζζ in the curvature, for short

times and in a neighbourhood of ζ0, z1 has to have the following form:

z1 ∼ A0(t)(ζ − ζ0(t))
−3/2 + Ad(t)(ζ − ζd(t))−3/2 (3.6)

with A0(0) + Ad(0) = 0. The spawn daughter singularity ζd(t) moves according to the
equation

ζ̇d(t) = −q10(ζd(t), t) with ζd(0) = ζ0(0), (3.7)

whereas the motion of the zero ζ0(t) is governed by

ζ̇0(t) = −q10(ζ0(t), t)− q20ζ(ζ0(t), t)[zζζ(ζ0(t), t)]
−1. (3.8)

Thus, ζ0(t) and ζd(t) travel at very different speeds. Depending on the initial data, ζd(t)
could have an impact on the interface when the zero is still far from the unit disk. For
future reference, we define td to be the time at which the solution to (3.7) reaches the
unit disk. For the data we consider here, equations (2.11)–(2.13) with A0(0) = 1 and
ζ0(0) = 1.2, td = 0.0463. Further inner asymptotic analysis of Tanveer (1993) suggests
that the initial singularity ζd(0) is transformed by the presence of surface tension into
a cluster of an infinite number of −4/3 singularities. The cluster is localized around
ζd(t) before it breaks up and disperse near the unit disk. Although the daughter
singularity ζd(t) reaches the unit disk in finite time, the asymptotic theory suggests
that the actual −4/3 singularities can get very close to the unit disk but do not hit it.

4. An effective numerical method to study the limit
4.1. Noise and the parametrization of the solution

All numerical quantities are affected by the presence of round-off noise whose mag-
nitude is determined by the numerical precision. For example, the numerical solution
of the interface position zj(t) is perturbed by round-off errors εj(t) in the form

zj(t) + εj(t). Let f̂k denote the kth mode of the discrete Fourier transform of f. From
linear stability analysis around equilibrium, the Fourier modes of the noise εj are
subject to exponential growth

ε̂k(t) = eρ(k)t ε̂k(0),

where ρ(k) ≈ |k| − B|k|3. For sufficiently small B, many high modes grow very fast
and the numerical solution zj becomes severely polluted when |ε̂k| > |ẑk|, i.e. when
the noise dominates the physical solution.

Numerical filtering is an important tool to limit this spurious growth of noise. In
particular, the nonlinear filter introduced by Krasny (1986) has proven to be very
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Figure 2. Hele-Shaw bubble at t = 0.054 corresponding to ζ0 = 1.2 and B = 10−6. Computa-
tion performed in double precision using the equal-arclength parametrization. (a) The interface.
(b) Close-up near one tip. (c) The Fourier spectrum of x.

successful in the computation of many ill-posed and nearly ill-posed problems. The
Krasny filter is defined as follows. Given an error tolerance (filter level) τ, the filter
sets to zero all Fourier modes below this value, i.e.

f̂pk =

{
f̂k if |f̂k| > τ

0 if |f̂k| 6 τ.
It is important to note that this numerical filtering becomes ineffective for those
modes above the filter level. Moreover, the filter truncates the natural decay of the
Fourier coefficients and may very well suppress crucial information from the numerical
solution. Indeed, the filter level establishes the effective precision for the numerical
computations, and as such, it should be considered an important numerical parameter
(see e.g. Shelley 1992). This issue is often overlooked.

The presence of surface tension implies additional numerical difficulties. Due to the
high-order spatial derivatives introduced by the surface-tension term, explicit time
integration methods have a severe stability constraint. A natural choice to handle this
numerical stiffness is the boundary integral method designed by Hou, Lowengrub &
Shelley (1994). This method is based on an equal-arclength parametrization of the
interface and a small-scale decomposition of the interface evolution equations. These
two components allow an efficient implementation of semi-implicit time discretizations
that remove the high-order stability constraint. However, the equal-arclength frame
which keeps the fluid particles uniformly distributed along the interface tends to
introduce many significant high modes, above the filter level, in the numerical solution.
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Figure 3. Hele-Shaw bubble at t = 0.054 corresponding to ζ0 = 1.2 and B = 10−6. Computation
performed in double precision using the conformal map parametrization. (a) Close-up of the
interface near one tip. (b) The Fourier spectrum of x.

When surface tension is small, the round-off errors for these high-frequency modes
have a large growth and the noise quickly dominates the numerical solution. This is
illustrated in figure 2 which shows the interface and the spectrum of x computed with
double precision (16 digits) using the equal-arclength parametrization. The solution
is clearly polluted by noise as observed in both the interface and the spectrum of x.
Note also that all the modes in the spectrum are well above round-off level (O(10−16))
and thus cannot be filtered without seriously affecting the accuracy of the numerical
solution.

Out of many choices (Lagrangian, equal-arclength, etc.), the parametrization pro-
vided by the conformal map description of the Hele-Shaw interface yields the most
compact representation of the solution in Fourier space. This was first observed
by Dai & Shelley (1993). The conformal parametrization was also employed by Siegel
et al. (1996) for its especial compact representation property. In fact, for B = 0, the
solution (2.11) has only two non-zero Fourier modes. High modes are introduced
weakly through surface tension. Figure 3 shows the interface and the spectrum of the
solution for B = 10−6, computed using the conformal map frame and the same nu-
merical parameters used for the previous equal-arclength computation. The spectrum
of the solution is very clean and has only a few non-zero modes.

With this parametrization, we can use Krasny filtering effectively to separate noise
from the physical solution for the majority of high to intermediate modes. Moreover,
based on the symmetry of the solution, the Fourier expansion of zζ(ζ, t) for ζ = eiα is
given by

zζ(ζ, t) =

∞∑
k=0

ak(t)ζ
3k, (4.1)
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Figure 4. Tip curvature versus α/2π at t = 0.054, computed with the conformal map frame in
double precision and without scaling. At the centre, from top to bottom, the plots correspond to
B = 0, 10−7, 2.5× 10−7, 5× 10−7, 7.5× 10−7, and 10−6.

where the ak are the Fourier coefficients of zζ computed on the unit circle (see e.g.
Dai et al. 1991). Thus, additional filtering in Fourier space can be performed to
enforced (4.1), by setting to zero all the modes of zζ that are not a multiple of 3.

In view of the previous remarks, the conformal map would seem to be the appro-
priate method to compute the zero-surface-tension limit. However, if we continue to
decrease B further, we obtain a perfectly regular limit! This is illustrated in figure 4,
where we show the curvature near one tip of the Hele-Shaw interface for different
surface tensions decreasing from 10−6 to 10−7, at t = 0.054 (past td = 0.0463). The
corresponding curvatures approach the zero-surface-tension curvature. As we will see
in the next section, this is an incorrect conclusion. For sufficiently small B, the method
fails to capture the presence of the complex daughter singularity.

4.2. Resolving extremely small B: scaling and high precision

Recall that the daughter singularity is created at t = 0+ in the complex ζ-plane
outside the unit disk. Initially, it is a very weak singularity. For times of O(∆t), where
∆t is the time step, the amplitude of the daughter singularity is O(B∆t). Since the
interface is analytic, its Fourier modes decay exponentially. As a result, many digits
are required to capture the presence of the singularity in the complex plane.

Increasing the number of digits alone, i.e. computing in higher precision arithmetic,
does not solve the problem as we are interested in the limiting behaviour of the
interface as B tends to zero. To resolve the initially very weak singular contributions
of surface tension for extremely small values of B, we combine high precision with a
scaling of the interface evolution equation.

Given a non-zero surface tension solution Z , we are interested in the deviation of
this solution from the zero-surface-tension solution Z0. We can derive an equation
for the scaled difference (Z − Z0)/B by first noting that Z0 satisfies the equation
Z0t = F(Z0α). Subtracting this equation from (2.6) and setting Z = Z0 + BZ̃ we get

Z̃t =
1

B
[F(Z0α + BZ̃α)− F(Z0α)] + G(Z0α + BZ̃α). (4.2)



The singular perturbation of surface tension 261

The advantage of using this scaled equation is that the surface-tension term G is O(1)
initially, independent of B. The term G contains the critical information about the
complex singularity. The first term on the right-hand side of equation (4.2) is zero
initially. Its contributions for short times are small compared to those coming from the
surface-tension term. We propose here two different ways to evaluate this first term to
avoid possible numerical instability caused by the division by B. One straightforward
approach is to filter F(Z0α + BZ̃α) − F(Z0α) before dividing by B, and then filter the
term obtained after the division. The disadvantage of this direct approach is that
several digits are lost by the filtering process. A more stable evaluation is obtained
by rewriting [F(Z0α + BZ̃α)− F(Z0α)]/B to factor B out. Note that

1

B
[F(Z0α + BZ̃α)− F(Z0α)] =

∫ 1

0

1

B

d

ds
F(Z0α + sBZ̃α) d s. (4.3)

Then, using (2.7) we have that

1

B

d

ds
F(Z0α + sBZ̃α) = 2i(Z0α + sBZ̃α)(I − iH)[|Z0α + sBZ̃α|−4

×Re {Z̃∗α (Z0α + sBZ̃α)}]− iZ̃α(I − iH)|Z0α + sBZ̃α|−2, (4.4)

where the asterisk denotes complex conjugate. The leading factor B has been cancelled
on the right-hand side of equation (4.4). This expression, which is a smooth function
of the parameter s, can now be used to obtain a numerically stable evaluation of
[F(Z0α + BZ̃α) − F(Z0α)]/B by performing the integral in (4.3) with relatively few
points.

During the review of this paper, one of the referees pointed out an elegant and
efficient way to scale the factor B in the left-hand side of (4.3) without having
to evaluate the right-hand side integral. This efficient scaling can be obtained by
separating the zero-surface-tension solution in the following form:

1

|Zα|2 =
1

|Z0α|2 + Bh(α), (4.5)

where

h(α) =
−2Re (Z̃α/Z0α)− B|Z̃α/Z0α|2

|Zα|2 (4.6)

and Z = Z0 + BZ̃ . Thus, from (2.7) we have that

F(Zα)− F(Z0α) = −BiZα(I − iH)h(α)− BiZ̃α(I − iH)|Z0α|−2. (4.7)

The right-hand side of this equation can be divided safely by B and the result can be
evaluated with spectral accuracy using the fast Fourier transform (FFT).

The second important ingredient in capturing enough surface tension modes is to
use very high precision arithmetic to solve numerically the scaled equation (4.2). High
precision has the additional benefit of reducing the amplitude of the round-off noise.
Variable high precision (up to 80 digits) was accomplished in this work with the use
of the multi-precision package developed by Bailey (1990).

4.3. Highly accurate space–time discretization

We use a spectrally accurate spatial discretization of equation (4.2). All derivatives
of Z̃ and Hilbert transforms are computed using the discrete Fourier transform. The
integral in (4.3) is approximated with a sixth-order Newton–Cotes quadrature formula
and the result is compared with the direct approach explained above. The derivatives
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of the exact zero-surface-tension solution Z0 are obtained analytically. Finally, the
time integration is performed with a fourth-order explicit Adams–Bashforth method.
Although implicit schemes give a less restrictive stability constraint than that of
explicit methods, we do not benefit from their use here, as we are interested in the
limiting behaviour as B → 0. For the set of values of B we consider, the choice of ∆t,
as dictated by accuracy, turns out to be smaller than that imposed by the stability
constraint. An implicit method would only be more efficient for much larger values
of B than those considered here.

5. Numerical results
Since Z̃ = (Z −Z0)/B, where Z0 is the exact zero-surface-tension solution given by

equation (2.11), Z̃ is zero initially. Here, we take ζ0 = 1.2 and A(0) = 1 for which the
daughter singularity time td = 0.0463, and the zero-surface-tension cusp singularities
occur at tc = 0.3301 (see Siegel et al. 1996).

Our numerical experiments are divided in three parts. First, we compute the
interface evolution for different decreasing values of B up to the time t = 0.048, which
is slightly past td. These computations demonstrate the singular limiting behaviour
of the interface. In the second part, we present more detailed information on the
time and length scales near td, as B decreases. These numerical results provide further
understanding of the surface-tension singular effects and are relevant to some of the
scalings predicted by the asymptotic theory. Finally, we examine the impact of the
daughter singularity by computing the evolution of the interface for a very small
surface tension coefficient, B = 10−8. The computations proceed up to the time where
the effects of the complex singularity begin to be visible on the interface. The effects
are compared with those produced by much large surface tensions.

Capturing the complex singularity also requires accurate time stepping. For each
value of B and fixed spatial resolution, we successively halved the time step ∆t
until no difference (within plotting resolution in both the physical solution and the
spectrum) was detected. It should be noted that ∆t cannot be reduced arbitrarily.
The product B∆t has to be well above the filter level so that enough Fourier modes
of the daughter singularity are captured initially. Otherwise, for a given filter level,
it is possible to choose ∆t sufficiently small so that the daughter singularity would
be completely filtered out. We also found that while the stability constraint for the
explicit time integration is relaxed as the surface tension coefficient B decreases, the
accurate computation of the singularity motion requires decreasing ∆t linearly as B
is reduced.

The computations started with N = 4096 (N is the number of points along the
whole interface). N was doubled to 8196 when the magnitude of the highest Fourier
mode exceeded the filter level. The time step was then reduced by a factor of 8. The
precision level was varied to verify that the complex singularity was well captured.
We started with 40 digits of precision and compared with the solutions obtained with
60 digits. We observed an appreciable difference in the 40- and 60-digit solutions,
particularly for the smallest values of B (10−8 and 10−9). We increased the precision
to 80 digits and found agreement with the 60-digit computations for all the values of
B we considered here.

The use of variable high precision not only allowed us to ensure that the complex
singularity was well captured but also provided a test for the presence of noise. The
agreement of the solutions computed with extremely low filter levels, 10−56 and 10−78,
showed that noise effects were effectively controlled up to times slightly past td.
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Figure 5. Zα − Z0α vs. α/2π around one tip of the interface at t = 0.048 for (a) B = 10−7, (b) 10−8,
and (c) 10−9. N = 8192. Precision level 60. Filter level 10−56.

As explained in § 4.2, we compute the term [F(Z0α+BZ̃α)−F(Z0α)]/B in two different
ways. The evaluation of this term using the integral in (4.3) is performed with a sixth-
order Newton–Cotes formula with M points. Since the integrand is a smooth function
of the parameter s, very few points are actually needed for an accurate evaluation.
By varying M and comparing with the direct evaluation, we found that the integral
is well-resolved for M = 32. On the other hand, the direct evaluation requires higher
precision to compensate for the digits lost in the filtering process. For the range of B
values we considered, the direct evaluation is computationally faster than performing
the integral. However, for much smaller B, the evaluation through the integral would
be both more stable and faster as the overhead for the higher precision needed for
the direct evaluation would be significant.

5.1. The singular limiting behaviour

We present in this part computations performed for B = 10−7, 10−8, and 10−9.
Figure 5 shows Zα − Z0α plotted against α/2π around one tip of the interface and at
the fixed time t = 0.048. Note that this time is already past td. As B decreases from
10−7 to 10−9, maxα |Zα − Z0α| does not decrease. In fact, it has a moderate growth.
This is a clear indication of the singular limiting behaviour. A shrinkage of the length
scale is also observed in figure 5. The distance between the two maxima of |Zα −Z0α|
decreases as B is reduced. We give more details about the length scale in § 5.2.

The singular nature of the asymptotic solution is better appreciated in the deviations
of the B > 0 curvatures from the corresponding zero-surface-tension curvature. As
observed in figure 6, the deviations are significant and rather localized at the fixed
time t = 0.048. Indeed, the smaller the surface tension the larger the deviation.

At t = 0.048, the surface-tension effects are still inappreciable at the interface itself.
As figure 7 shows, the derivative of the curvatureKα is very large at this time (about
3×104 for B = 10−9) but the surface-tension term BKα is still very small at t = 0.048,
for the values of B considered. Note that t = 0.048 is only slightly past td. According
to Siegel et al. (1996), the surface-tension term becomes O(1) when t = td + O(1),
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regardless of the value of B. This is when the B > 0 interface has an O(1) deviation
from the B = 0 solution.

Another clear sign of the singular limiting behaviour is given in figure 8. The
spectrum of X̃ = Re {Z̃} is plotted for B = 10−7, and B = 10−8 before and after
td. For early times both spectra almost coincide then, as td is approached, they rise
and separate. The spectrum corresponding to B = 10−8 rises higher indicating a more
singular solution.
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Figure 8. The spectrum of X̃ for B = 10−7 and B = 10−8, before (a) and after (b) td.

5.2. Time and space scalings near td

The quantification of the deviations of the B > 0 solutions from the B = 0 solution,
and the time (as defined below) when these deviations first occur, provide very
important information. In the limit as B → 0, this information can be related to the
size and the motion of the complex singularity cluster as it approaches the physical
domain. It also gives a comparison point for some of the scalings predicted by the
asymptotic theory.

Following Siegel et al. (1996), we define tq as the first time at which max |Zα(α, t)−
Z0α(α, t)| = q. Given that the daughter singularity is actually a cluster of singularities,
tq as a function of B gives useful information about the size of the cluster as
it approaches the unit disk. According to the asymptotic theory, the size of the
singularity cluster is O(B1/3). The effects of the daughter singularity will be felt when
the leading edge of the cluster reaches the unit disk. Therefore, tq should vary linearly
with B1/3, for sufficiently small q and B. Figure 9 shows log-log plots of td − tq for
a set of values of B, and q = 0.0001, 0.0002, and 0.0005. We computed the slopes
obtained from every two adjacent points in the curves and took the average. The
average slopes are: 0.3819, 0.3969, and 0.4150 respectively. While slightly above 1/3,
the slopes tend to decrease as q is reduced. The values of the slopes are similar to
those reported by Siegel et al. (1996).

Information about the size of the singularity cluster can also be obtained by
measuring the length of the region most affected by surface tension. More pre-
cisely, we define the length sp(t) to be twice the largest α ∈ [0, π/3] for which
|Zα(α, t) − Z0α(α, t)| > p. The asymptotic theory suggests that, when the daughter
singularity is in the proximity of the unit disk, the appropriate time variable should
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q = 0.0001, 0.0002, and 0.0005. The average slopes are 0.3819, 0.3969, and 0.4150 respectively. The
dot-dashed line is the 1/3-slope line predicted by the asymptotic theory.
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Figure 10. Log-log plot of sp versus B. From top to bottom the solid curves correspond to the
scaled time T = 1, T = 0, and T = −1. The dot-dashed line is the 1/3-slope line predicted by the
asymptotic theory. (a) p = 0.0005; (b) p = 0.001.

be defined as (see Siegel et al. 1996, § 4.2)

T =
t− td
B1/3

. (5.1)

In figure 10, we plotted sp at the scaled times T = −1, 0 (t = td), and 1. The curves
corresponding to T = −1 and T = 0, for the smallest value of p (figure 10a), have
an average slope very close to 1/3. This is in agreement with the asymptotic theory.
Although the curves corresponding to T = 1 do not show a clear linear behaviour,
it is observed that their average slopes are much less than 1/3, suggesting that the
singularity cluster gets squeezed after td. However, this result is not conclusive. The
solutions at T = 1 are more difficult to resolve and the unevenness of the T = 1
curve may be due to insufficient resolution for some of the values of B considered.

We have also measured the maximum value of the surface-tension term BKα at
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slope is 0.8556) and bottom one to T = −1 (average slope is 0.9963). The slope predicted by the
asymptotic theory is 1/3.

the scaled times T = −1 and T = 0. The two corresponding curves of max |BKα|
appear in figure 11. For the earlier time T = −1, there is a clear linear behaviour
with an average slope very close to 1. On the other hand, at T = 0 (t = td), the
behaviour is uneven but with a smaller average slope (0.8856). For the three smallest
values of B computed, the average slope is 0.8489. This small slope, less than 1, is
another indication of the singular limit. As B → 0, |Kα| would diverge at td. The
slope predicted by the asymptotic theory is 1/3.

5.3. The impact of the daughter singularity

We present first a sequence of pictures of the interface curvature near one tip at early
times near td (figure 12). The computations correspond to B = 10−8. The proximity
of the daughter singularity to the physical domain is already felt at the time t = 0.043
around the interface tips. At t = 0.043, the tip curvature flattens in a very localized
finite region. This is in agreement with the theoretical small but non-zero size of
the compact singularity cluster. The curvature subsequently develops large deviations
from the zero-surface-tension curvature and the affected regions near three tips spread
in time. This behaviour is consistent with the asymptotic theory that predicts that
the daughter singularity cluster will disperse once it gets very close to the unit disk.
Note also that the number of local maxima in the curvature is growing in time. It is
conceivable that, as suggested by Siegel et al. (1996), the singularity cluster breaks up
after td into subclusters that spread around the physical domain.

A longer-time computation identifies the impact of the daughter singularity on
the interface. The computation was performed up to td using 60-digit arithmetic.
Shortly after that, we switched to double precision when the highest mode of Z̃ was
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(double precision).

about 10−15. The number of points was doubled (and ∆t was reduced by a factor
of 8) whenever the spectrum became under-resolved. We stop the computation with
N = 32768 and ∆t = 10−7. The curvature of the solution at subsequent times is
presented in figure 13. In a very short time interval, the maximum of curvature has
grown by more than 10 times its value at t = 0.049, and the singular regions (near
the three tips of the interface) continue to spread in time. Despite the complicated
structure, the two innermost symmetric maxima in the curvature define a clear length
scale. At t = 0.0502, very small oscillations around α = 0 are observed in the curvature.
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the times t = 0.23–0.50, with a 0.03 time difference between profiles. Computation performed with
the equal-arclength method.

It is possible that these oscillations are caused by noise which is affecting many
more high-frequency components at this stage. Nevertheless, the largest minimum-
to-maximum transition dominates the effects observed in the actual interface. Indeed,
as figure 14 shows, the singular effects are already visible in the interface. The small
indentations near the interface tip correspond to the largest curvature transition.
These side indentations are a signature of surface tension.

For larger B, the indentations appear farther off the centre of the interface tip (see
Dai et al. 1991; Siegel et al. 1996). We illustrate this with a pair of computations
performed using the equal-arclength method of Hou et al. (1994). Our method
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presented here cannot compute accurately for larger surface tension due to time-
stepping limitations. Figure 15 shows the evolution of the interface for B = 10−4.
The symmetric indentations are clearly formed before the noise-induced tip splitting
occurs. Figure 16 gives a close-up of the interface near one tip at different times for
B = 10−4 and B = 10−5, both cases computed with the equal-arclength method. For
B = 10−5, the side indentations produced by surface tension begin to be visible in the
second curve from the left. Shortly after that the tip-splitting process and the finger
formation begin.

It is important to note the fast growth that the curvature and its derivative have
shortly after td. This rapid growth is shown in figure 17 for B = 10−8. The large and
fast transition observed may give the impression of a finite-time curvature singularity.
This seems to be unlikely in view of the long-time behaviour observed for larger
B. The rescaling features of the asymptotic theory inner-scale equation (Siegel et al.
1996) suggest that, if solutions exist for larger B, they will exist for any non-zero B,
at least well beyond td. In view of this, a more plausible scenario is the following. The
daughter singularity cluster will asymptotically shrink to a point, in the limit as B is
decreased. The compact cluster will get within a maximal distance of O(B1/2) to the
unit disk but will not hit it in finite time. As explained below, this close proximity
of the singularity cluster to the physical domain can cause a fast transition in the
interface curvature. If the B > 0 solutions exists for all times, surface tension will
define a length scale according to the minimum distance of the complex singularity
to the unit disk.

6. Conclusions
A numerical investigation of the singular effects of surface tension on an evolving

Hele-Shaw interface has been presented. We designed an innovative numerical method
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to overcome the extreme noise sensitivity of the problem and to capture the surface-
tension-induced complex singularity in the limit as the surface tension coefficient B
tends to zero. By combining a compact parametrization of the interface, a scaling of
the evolution equations, and very high precision, we obtain a numerical method that
greatly reduces the effect of noise and allows us to identify the true effects of surface
tension.

Through a series of intensive computations for extremely small values of the
surface tension coefficient we demonstrated clearly that the limiting behaviour of
the interface as B tends to zero is singular. The onset of the singular effects is
well predicted by following the theoretical impact time of the daughter singularity
cluster on the physical domain. Our numerical results reflect, in accordance with the
asymptotic theory of Tanveer and of Siegel, Tanveer & Dai, that a surface-tension-
induced (daughter) singularity can produce O(1) effects on the interface when the
zero-surface-tension solution is still smooth. The singular effects are very localized
and the size of the affected regions decreases as B is reduced. It is also found that, after
the daughter singularity impact time and for a fixed surface tension, the singularly
affected regions slowly spread in time. This behaviour supports the theory that the
daughter singularity is a compact cluster of singularities that breaks up and spreads
around the unit disk after the impact time (Siegel et al. 1996).

At a later stage of the motion it is observed that the interface curvature has a rapid
and large growth in a short period of time around the localized singular regions.
This rapid variation detected by the numerics can give the impression of a finite-
time curvature singularity. However, the asymptotic theory suggests that the compact
singularity cluster will get very close (within an O(B1/2) distance) to the unit disk but
will not hit it in finite time. Since zζζ scales as B−1/3 in the inner region characterizing
the daughter singularity cluster, the proximity of this cluster to the physical domain
can cause the curvature to change from O(1) to O(B−1/3) over an O(B1/3) time scale.
Thus, it is conceivable that the rapid transition in the curvature growth reflects this
change of scales. Unfortunately, we cannot compute accurately much beyond the
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stage of the rapid transition. Long-time computations are extremely difficult due to
the spreading of Fourier modes and the impact of noise. Nevertheless, it is observed
that surface tension defines a length scale for the subsequent finger formation and
tip-splitting processes.
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